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Abstract

We introduce a generalisation of Aguiar’s (2017) random categori-
sation rule (RCR) that allows preferences to be category dependent.
Our generalised random categorisation rule (GRCR) requires the pref-
erences associated with two different categories to agree on their in-
tersection. We show that this is equivalent to relaxing the complete-
ness and transitivity requirement on the preference relation in the
RCR model. The GRCR model is therefore characterised by relaxing
Aguiar’s (2017) Acyclicity axiom to an Asymmetry axiom. We also
provide a characterisation of the model in terms of Block-Marschak
polynomials. Finally, we show that a random choice function has a
Manzini and Mariotti (2014) model iff it has both a GRCR represen-
tation and a Brady and Rehbeck (2016) model.
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1 Introduction

Consumption items are elements of categories before they are elements of
budget sets. Outside laboratory settings, consumers rarely “experience”
budget sets.1 Rather, consumers experience wants, needs and desires. It
is therefore natural that they should organise the world into different cat-
egories that meet such needs, wants and desires. Categorisation simplifies
choice by focussing attention on a salient subset of the budget set — the
consideration set.
We imagine the following scenario. A consumer experiences a desire for a

particular category of good. She then determines which, if any, goods in that
category are within her budget set. If none is available, she does not make
a purchase —which we formally represent as choosing the “default”option.
Otherwise, she chooses her most preferred member of the category within her
budget set. Aguiar’s (2017) random categorisation rule (RCR) models just
such a scenario. Our model will differ in one important respect. We allow
that categorisation may affect how alternatives are evaluated: preferences
may be category-dependent, but with an important restriction.
The motivation behind our generalisation of Aguiar’s RCR is the idea that

preferences are partially formed rather than entirely given. The mechanism
of preference formation is purposive comparison — comparing alternatives
for the purpose of making a choice. In particular, this is what enforces
“rational” consistency on preferences. Only alternatives within the same
category are ever directly compared for the purposes of making a choice.
Moreover, alternatives that do not co-exist in any single category may be
intrinsically more diffi cult to compare —apples versus oranges, rather than
different varieties of apples. It is therefore natural that preference discipline
may be weaker across categories than within.
Our generalised random categorisation rule (GRCR) relaxes the restric-

tion that the same preference order (on the universal domain of alternatives)
guides choice within every category. However, in line with the motivation
above, we restrict this category-dependence by requiring agreement on cat-
egory intersections. If two goods co-exist in two different categories, they
must be ranked the same way by the preference orders associated with each
of the categories. Conflicting category-dependent rankings of two goods can-
not survive their careful comparison for the purpose of making a choice.
As a consumer gains more experience, indirect comparisons may gradually

eliminate preference conflict across categories. Her behaviour will approxi-

1By “budget set”we simply mean the set of alternatives available for choice; the alter-
natives need not be bundles of goods and the available set need not be determined by a
fixed budget and fixed prices for each good.
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mate more and more closely to an RCR. However, a fully dynamic model of
preference formation is a task for future research.2

Our main results offer two characterisations of the GRCR. The first is
obtained by relaxing the Acyclicity axiom in Aguiar’s (2017) axiomatisation
of the RCR to an Asymmetry condition. The second characterisation uses
the fact that the RCFs with a GRCR representation form a subclass of the
RCFs with a random utility model (RUM). We identify the restrictions on
the Block-Marschak polynomials that determine this subclass.

2 Random categorisation

Let X be a finite set of alternatives. We use 2X to denote the power set of
X. A choice set will be an element of 2X . Let a∗ /∈ X denote the default (or
outside) option. Note that a∗ is excluded fromX by assumption: if the choice
set is empty, then a∗ must be chosen. For each A ⊆ X let A∗ = A ∪ {a∗}.
A consumer facing choice set A may choose any element of A∗; the latter is
called the consumer’s budget set. Let A = X�A for each A ⊆ X. Thus,
A is the complement of A in X, not in X∗. Throughout, we omit brackets
around singleton sets whenever convenient, provided no confusion is likely to
arise.
A random choice function (RCF) is a mapping p : X∗ × 2X → [0, 1] that

satisfies p (x,A) = 0 if x /∈ A∗ and∑
x∈A∗

p (x,A) = 1

for all A ⊆ X. We interpret p (x,A) as the probability of choosing x given
choice set A. If E ⊆ X∗ we write p (E,A) as shorthand for∑

x∈E
p (x,A) .

We interpret p as the stochastic choice behaviour of some individual and we
seek conditions for its consistency with some convenient model of behaviour.
To describe the models of interest we need some additional notation. Let

Σ denote the set of reflexive and antisymmetric binary relations on X, and
let Λ ⊆ Σ denote the elements of Σ which are also complete and transitive
(i.e., linear orders ≡ antisymmetric weak orders). If %∈ Σ then � and ∼ are
defined from % in the usual way. Given x ∈ X and %∈ Σ, let % (x) denote
the %-upper contour of x and � (x) the �-upper contour. That is:

% (x) ≡ {y ∈ X | y % x}
2For one attempt at a dynamic model in similar spirit, see Barokas (2021).
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and
� (x) ≡ {y ∈ X | y � x} .

Note that % (x) =� (x) ∪ {x} when %∈ Λ. Moreover, if %∈ Λ then x is
%-maximal in E ⊆ X iff E∩ % (x) = {x}. We employ analogous notation
for binary relations on X∗. In particular: Λ∗ is the set of linear orders on X∗

and
%∗ (x) ≡ {y ∈ X∗ | y % x}

for any x ∈ X and any %∗∈ Λ∗. The set of all probability mass functions on
the finite set Λ∗ is denoted by ∆. If π ∈ ∆ and E ⊆ Λ∗ then we write π (E)
for ∑

%∗∈E

π (%∗) .

Finally, an attention index (Aguiar et al., 2023) is a mapping m : 2X → [0, 1]
that satisfies ∑

E⊆X
m (E) = 1.

Let A denote the set of all attention indices. If m ∈ A we use supp(m) to
denote the support of m. We interpret m (E) as the probability that the
decision-maker pays attention (only) to the category of goods defined by the
set E.
The following model goes back (at least) to Block and Marschak (1960):3

Definition 1 If p is a random choice function, then p has a random utility
model (RUM) if there exists some π ∈ ∆ such that the following holds for
any (x,A) ∈ X∗ × 2X with x ∈ A∗:

p (x,A) = π ({%∗∈ Λ∗ | A∗∩ %∗ (x) = {x}})

In this case, we say that π is a RUM for p.

Next, we have Aguiar’s (2017) random categorisation rule:

Definition 2 (Aguiar, 2017) If p is a random choice function, then p can
be represented by a random categorisation rule (RCR) iff there exist
m ∈ A and %∈ Λ such that

p (x,A) =
∑

E:(E∩A)∩%(x)={x}

m (E) (1)

3Definition 1 adapts the classical RUM to a choice environment with default. In the
classical version, there is no requirement that budget sets contain a∗; the domain of p is
X∗ ×

(
2X

∗� {∅}
)
, with p (x,A) interpreted as the probability of choosing x when facing

budget set (not choice set) A.
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for all A ⊆ X and every x ∈ X, and

p (a∗, A) =
∑

E:E∩A=∅

m (E) (2)

for any A ⊆ X. In this case, we say that (m,%) is an RCR for p.

The RCR captures the spirit of the scenario in the Introduction. Desires
to consume a particular category of goods arrive randomly according to the
attention index, m. If no member of the category is available in the current
choice set, the consumer chooses the default —see (2) —which we interpret
as choosing not to do any shopping. Otherwise, she chooses the %-most-
preferred alternative in the intersection of the category and the choice set:
see (1). We refer to this intersection as the consumer’s consideration set.
Aguiar (2017) shows that every RCF with an RCR representation also

has a RUM. This is not surprising. In the presence of a default option, ran-
dom preference can replicate random categorisation by randomly demoting
alternatives below a∗ in the ranking. Rather than choosing category E with
probability m (E), we choose (with the same probability) an order %∗E∈ Λ∗

that ranks everything in E above a∗, everything in E below a∗ and matches
the RCR order, %, on E.
A feature of the RCR, which is in common with many models of choice

based on consideration sets,4 is that the default is implicitly inferior to any-
thing in X, since it is chosen only if nothing else is considered. While the
assumption that all budget sets contain a common default is a structural
assumption which can (in principle) be checked, the additional assumption
that the default is undesirable is a restriction on preferences, which are en-
dogenous to the model. Moreover, this restriction does not have the flavour
of a “rationality”requirement, like transitivity for example. How can it be
justified?
Consider the following variation on the RCR, which relaxes this preference

requirement: there exist m ∈ A and %∗∈ Λ∗ such that

p (a,A) =
∑

E:(E∩A)∗∩%∗(a)={a}

m (E)

for all A ⊆ X and every a ∈ X, and

p (a∗, A) = 1−
∑
a∈A

p (a,A) =
∑

E:(E∩A)∗∩%∗(a∗)={a∗}

m (E) .

4This trend was established in the pioneering work of Manzini and Mariotti (2014).
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If a∗ �∗ a for some a ∈ X, then this model implies that we must have
p (a,A) = 0 for all A ⊆ X. Options that are ranked below the default
are irrelevant to choice, and this will be empirically evident. Therefore,
provided we add one further structural assumption —that p (a, {a}) > 0 for
all a ∈ X —we must have a∗ ranked below every a ∈ X in this model. Under
this additional assumption, we effectively have an RCR representation. If
this structural assumption is not met, then it does no harm to remove the
offending elements of X until it does, since the removed options would never
be chosen anyway. This logic suggests that the preference restrictions in an
RCR are indeed innocuous (or rather, can be replaced by defensible structural
asusmptions).
The following generalises the RCR notion in a way that preserves this

logic:

Definition 3 If p is a random choice function, then p can be represented
by a generalised random categorisation rule (GRCR) iff there exist
m ∈ A and %E∈ Λ for each E ∈ 2X , such that: (i) for each E,F ∈ supp(m)
the binary relations %E and %F agree on E ∩ F ; and (ii) for all A ⊆ X and
every a ∈ X,

p (a,A) =
∑

E:(E∩A)∩%E(a)={a}

m (E) (3)

and
p (a∗, A) =

∑
E:E∩A=∅

m (E) (4)

Condition (i) says that any two category-dependent preferences in the
support of m must agree on the intersection of their respective categories.
If (i) is strengthened to a requirement that %E=%F=% for each E,F ∈ 2X

then (m,%) is an RCR for p.5 Hence, any RCR is a GRCR. However, the
converse is false, as the following example illustrates.

Example 1 Let X = {a, b, c}, E = {a, b}, F = {b, c} and G = {a, c}.
Define attention index m ∈ A as follows:

m (E) = m (F ) = m (G) =
1

3
.

Let %E∈ Λ satisfy b �E a, let %F∈ Λ satisfy c �F b, and let %G∈ Λ satisfy
a �G c. Defining p using (3)-(4) gives an RCF with a GRCR representation.
Suppose (m̂,%) is an RCR that rationalises p. Since

p (a, {a, b}) =
1

3
<

2

3
= p (a, {a}) (5)

5In fact, it suffi ces that %E=%F for each E,F ∈ supp(m).
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we deduce b � a. (Note that p (a, {a}) =
∑

A:a∈A m̂ (A), so (5) implies that a
is not always chosen when it is considered alongside b.) Likewise, we deduce
c � b from p (b, {b, c}) < p (b, {b}) and a � c from p (c, {a, c}) < p (c, {c}).
This contradicts the transitivity of �.

How can we justify the GRCR assumption that all the category-dependent
preferences rank the default last? Once again, we start by defining a variant
model that relaxes just this constraint. Consider a model in which there exist
m ∈ A and %∗E∈ Λ∗ for each E ∈ 2X , such that (i∗) for each E,F ∈ 2X with
m (E)m (F ) > 0, the binary relations %∗E and %∗F agree on (E ∩ F )∗; and
(ii∗) for all A ⊆ X and every a ∈ X,

p (a,A) =
∑

E:(E∩A)∗∩%∗E(a)={a}

m (E)

and
p (a∗, A) = 1−

∑
a∈A

p (a,A) .

For any a ∈ X, condition (i∗) implies that a∗ is ranked the same way against
a by any %∗E with a ∈ E and m (E) > 0. Hence, if a∗ �∗E a for some E ⊆ X
and some a ∈ E withm (E) > 0 then a∗ �∗F a for any F ⊆ X with a ∈ F and
m (F ) > 0. Therefore, we can justify our preference restriction in the GRCR
by exactly the same logic as its justification in the RCR context. Condition
(i) in the GRCR definition plays an important role in this justification.
As for an RCR (see Corollary 1 of Aguiar, 2017), the attention index in

a GRCR is unique:6

Proposition 1 Let p be an RCF with a GRCR representation. Then the
attention index in the representation is unique (i.e., any two GRCR repre-
sentations for p must share the same attention index). In particular

m (A) =
∑
B:B⊆A

(−1)|A�B| p
(
a∗, B

)
(6)

for each A ⊆ X.

Aguiar (2017, Lemma 1) notes that any RCF with an RCR representation
also has a RUM. This result also generalises to the GRCR.

Proposition 2 Any RCF with a GRCR representation also has a RUM. The
converse is false.

6Proofs of all results can be found in the Appendix.
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3 Characterisations of the GRCR class

In this section we characterise the class of RCFs that can be represented
by a GRCR. In fact, we provide two characterisations: see Theorem 3 and
Corollary 1 below.
Our first main result will facilitate the first of these characterisations by

allowing us to restate the GRCR definition in a useful equivalent form:

Theorem 1 If p is a random choice function, then p has a GRCR represen-
tation iff there exists (m,%) ∈ A× Σ such that

p (a,A) =
∑

E:E∩A∩%(a)={a}

m (E) (7)

and
p (a∗, A) =

∑
E:E∩A=∅

m (E) (8)

If p is a random choice function and the pair (m,%) ∈ A × Σ satisfies
(7) and (8), then we will also refer to (m,%) as a GRCR representation
for p. In this formulation, a GRCR has a single preference relation but
it need not be linear: reflexivity and antisymmetry are the only (explicit)
requirements. However, conditions (7)-(8), together with the assumption that
p is an RCF, impose additional restrictions on %. This is the essence of
Theorem 1. Inother words, condition (i) in Definition 3 ensures that category
dependence of the linear preference can be replicated by relaxing the linearity
requirement on the (single) preference relation.
Note that if (m,%) is a GRCR representation for p in the sense of Theorem

1, then (8) ensures that m continues to be uniquely determined from p by
the Möbius inversion formula (6) —see the proof of Proposition 1.
It is easy to construct a GRCR representation, in the sense of Theorem

1, for Example 1. Simply define m as before and let

% = {(a, a) , (b, b) , (c, c) , (b, a) , (c, a) , (a, c)} .

In a GRCR, the preferences on any consideration set that occurs with
positive probability are independent of how that consideration set was de-
termined: if E,F ∈ supp(m) and A,B ∈ 2X are choice sets such that
A∩E = B∩F , then %E and %F coincide on this common intersection. The-
orem 1 therefore allows us to express the GRCR in the language of “random
attention”models (see Cattaneo et al., 2020 and Kovach and Suleymanov,
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2023). Let us say that µ : 2X × 2X → [0, 1] is a consideration mapping
provided µ (B,A) > 0 only if B ⊆ A, and∑

B⊆A
µ (B,A) = 1

for each A ⊆ X. We interpret µ (B,A) as the probability that the consid-
eration set is B when choosing from A. A consideration mapping, µ, has a
constant random attention (CRA) representation if there exists an attention
index, m, such that

µ (B,A) =
∑

E:E∩A=B
m (E)

for every A,B ∈ 2X with B ⊆ A. It is evident that if µ has a CRA representa-
tion then µ is monotonic in the sense of Cattaneo et al. (2020, Assumption
1). We therefore have the following result, whose straightforward proof is
omitted:

Proposition 3 Let p be an RCF. Then p has a GRCR iff there exists a
consideration mapping, µ, with a CRA representation and %∈ Σ such that:
for all A ⊆ X and every a ∈ X,

p (a,A) =
∑

E:E∩%(a)={a}

µ (E,A) (9)

and
p (a∗, A) = µ (∅, A) (10)

The GRCR is thus a generalised form of random attention model (Cat-
taneo et al., 2020, Definition 3) in which preferences are not required to be
linear. In fact, the GRCR does not quite “generalise”the random attention
model, since the GRCR imposes the additional restriction that the outside
option be ranked last in X∗. There is no outside option in the set-up of Cat-
taneo et al. (2020); the set-up of Kovach and Suleymanov (2023) includes an
outside option, but its ranking is unrestricted.7

7We also deviate from the terminology in Cattaneo et al. (2020) and Kovach and
Suleymanov (2023). They refer to µ as an “attention rule”but we wish to distinguish the
category to which attention is focussed from the consideration set, which also incorporates
any budget or other feasibility constraints on choice.
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3.1 From Acyclicity to Asymmetry

Using Theorem 1, the GRCR can be axiomatically characterised by adapting
Aguiar’s (2017) axiomatisation of the RCR. The latter involves two axioms.
The first is the Weakly Decreasing Marginal Propensity (of Choice), or

WDMP, axiom. This axiom requires C-total monotonicity of the function ϕ :
2X → [0, 1] defined by ϕ (A) = 1− p (a∗, A). We refer the reader to Aguiar’s
paper (ibid., Definition 10) for the formal definition of C-total monotonicity.
For our purposes, the key feature of the WDMP axiom is that it is equivalent
to requiring m ≥ 0 when m : 2X → R is defined by (6) —see the discussion
on p.48 of Aguiar (2017) and Section 7.2.3 of Grabisch (2016).8 Since m is
the Möbius inverse of the mapping E → p

(
a∗, E

)
, and since p (a∗, ∅) = 1,

the WDMP axiom also ensures that m ∈ A.

Axiom 1 (WDMP) The function m : 2X → R defined by (6) satisfies
m ≥ 0.

To state his second axiom, Aguiar defines the following revealed strict
preference relation on X: a B b iff p (b, A ∪ a) 6= p (b, A) for some A contain-
ing b (where a, b ∈ X).

Axiom 2 (Acyclicity) The relation B is acyclic.

Acyclicity of B ensures that it has an extension in Λ by Szpilrajn’s The-
orem. Aguiar proves that any such linear extension, together with the at-
tention function described by (6), provides an RCR representation for p.
Conversely, every p with an RCR representation satisfies the WDMP and
Acyclicity Axioms.

Theorem 2 (Aguiar, 2017) Let p be a random choice function. Then p
has an RCR representation iff it satisfies WDMP and Acyclicity.

To characterise the GRCR we weaken Acyclicity to:

Axiom 3 (Asymmetry) The relation B is asymmetric.

8Aguiar’s terminology is somewhat non-standard. What he calls the C-total monotonic-
ity property is better known in the literature as the ∞-alternating (or ∪-alternating)
property. The implied property of the dual function ϕ : 2X → [0, 1], defined by
ϕ (A) = 1 − ϕ

(
A
)
, is conventionally called “total monotonicity” (equivalently, “∞-

monotonicity”or “∩-monotonicity”).
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In choice-theoretic terms, the Acyclicity axiom has the flavour of a Strong
Axiom of Revealed Preference, while our Asymmetry Axiom is analogous to a
Weak Axiom of Revealed Preference. Defining D to be the minimal reflexive
extension of B (that is: a D b iff a = b or a B b)9 we have:

Theorem 3 Let p be an RCF. Then p has a GRCR representation iff it
satisfies WDMP and Asymmetry. Moreover, if p has a GRCR representation,
then (m,D) is a GRCR representation for p, where m : 2X → R is defined
by (6). (We refer to this as the “canonical”GRCR representation for p.)

Thus, when p possesses a GRCR representation, both components of the
canonical GRCR may be explicitly recovered from p. All components of the
canonical representation are revealed by choice data. Example 1 shows that
D may be complete yet not transitive.
The proof of Theorem 3 also clarifies the relationship between the bi-

nary relation D in the canonical representation and the family of category-
dependent preferences in a GRCR representation in the sense of Definition
3: if E is in the support of m then the restriction of D to E coincides with
%E|E (i.e., the restriction of %E to E). In fact:

D =
⋃

E∈supp(m)

%E|E .

3.2 A Block-Marschak characterisation

We first recall the characterisation of the classical RUM. For any given RCF,
p, define hx : 2X → [0, 1] for each x ∈ X by

hx (E) = p
(
E,E ∪ {x}

)
and let mx : 2X → R be the Möbius inverse of hx (Shafer, 1976, Lemma 2.3).
Therefore:

hx (E) =
∑
A:A⊆E

mx (A)

and
mx (A) =

∑
B:B⊆A

(−1)|A�B| hx (B) .

Theorem 4 (McFadden, 2005) Let p be an RCF. Then p has a RUM iff
mx ≥ 0 for all x ∈ X and m ≥ 0 when m : 2X → R is defined by (6).

9Note that D need not coincide with {(a, b) ∈ X ×X | (b, a) /∈B}.
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Theorem 4 is a special case of Theorem 3.3 in McFadden (2005). It
adapts the characterisation of a classical RUM (Falmagne, 1978; Barberá and
Pattanaik, 1986) to choice problems with a default. This characterisation
requires non-negativity of a family of Möbius functions, known as Block-
Marschak polynomials.10 In particular, the function m is the Möbius inverse
of the mapping E → p

(
a∗, E

)
.

It is possible to re-express the Asymmetry axiom in terms of the Block-
Marschak polynomials {mx}x∈X defined previously.

Proposition 4 Suppose that p is an RCF. Then p satisfies Asymmetry iff ∑
B:{a,b}⊆B⊆X

|ma (B)|

 ∑
B:{a,b}⊆B⊆X

|mb (B)|

 = 0

for any a, b ∈ X with a 6= b.

Recall (Proposition 2) that every RCF with a GRCR representation has
a RUM. Recall too that if p has a RUM then mx ≥ 0 for all x ∈ X (Theorem
4). The additional restriction imposed by the Asymmetry Axiom is therefore: ∑

B:{a,b}⊆B⊆X

ma (B)

 ∑
B:{a,b}⊆B⊆X

mb (B)

 = 0

for any distinct a, b ∈ X. It is clear that this restriction is substantive: it
determines a “non-generic”subclass.

Corollary 1 Let p be an RCF and let m : 2X → R be defined by (6). Then
p has a GRCR representation iff m ≥ 0, mx ≥ 0 for all x ∈ X, and ∑

B:{a,b}⊆B⊆X

ma (B)

 ∑
B:{a,b}⊆B⊆X

mb (B)

 = 0

for any a, b ∈ X with a 6= b.

10In fact, our Möbius functions differ from those appearing in the conventional Block-
Marschak polynomials. When p has a RUM and x ∈ A, then mx (A) is the probability
of selecting a linear order for which A is the upper contour set for x, and m (A) is the
probability of selecting an order for which A∗ is the upper contour set for a∗. The standard
Block-Marschak polynomials assign these probabilities instead to the corresponding lower
contour sets and are obtained by the obvious change of variables. See Block and Marschak
(1960).
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The following corollary describes this subclass of random utility models.

Corollary 2 Let p be an RCF and let π ∈ ∆ be a RUM for p. Then p
satisfies Asymmetry iff

π ({%∗ |a �∗ b �∗ a∗}) π ({%∗ |b �∗ a �∗ a∗}) = 0 (11)

for any a, b ∈ X.

Condition (11) says that all linear orders in the support of π which rank
both a and b above a∗ must order a and b the same way. In other words, the
Asymmetry Axiom excludes disagreement about the ranking of alternatives
which are ranked above the default.11

4 Comparison with other random attention
models

Aguiar’s (2017) RCR is one of several well-known random attention models
with an outside option. All these models feature a linear order (%) on X
and a consideration mapping µ : 2X × 2X → [0, 1]. In each of these models,
the decision-maker, when confronted with a menu, A, first randomly draws
a consideration set, B, according to µ (·.A), then chooses the %-maximal
element of B, unless B = ∅ in which case a∗ is chosen. The models differ in
their specification of µ. If (m,%) is an RCR for p then, as noted above, the
associated consideration mapping has the CRA representation

µ (B,A) =
∑

E:E∩A=B
m (E) (12)

Two other well-known random attention models are those of Brady and
Rehbeck (2016; [BR]) andManzini andMariotti (2014; [MM]). The BRmodel
also generates the consideration mapping from an attention index, m ∈ A,
but BR require m to have full support (i.e., m (E) > 0 for all E ⊆ X) and
specify µ as follows:

µ (B,A) =
m (B)∑
E⊆Am (A)

(13)

In this case we say that µ has a Luce random attention (LRA) representa-
tion. The MM model features a function γ : X → (0, 1) which specifies the

11This does not exclude the possibility that the “lower ranked”of the two (say, a) may
be chosen with positive probability from a budget set that includes both a and b: the
support of π may include an order in which a is ranked above a∗ and b below a∗.
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probability that any given element of X will receive attention, with these
attention probabilities being independent across alternatives. Thus:

µ (A,B) =
∏
x∈A

γ (x)
∏

y∈B\A

(1− γ (y)) (14)

In this case we say that µ has an independent random attention (IRA) rep-
resentation.
The following result is accepted wisdom in the literature:12

Proposition 5 Let p be an RCF. Then p has an MM model iff it has both
an RCR representation and a BR model.

This (correct) claim is usually asserted on the strength of Kovach and
Suleymanov (2023).13 The latter authors prove (ibid., Corollary 1) a version
of Proposition 5 for a richer environment in which any element of X∗ may
serve as default, and random choice behaviour is specified for all possible de-
fault options. Their set-up also allows that the default may be chosen even
when non-default options are considered. That Proposition 5 is implied by
Corollary 1 in Kovach and Suleymanov (2023) is, perhaps, not entirely ob-
vious.14 We therefore provide a different proof of Proposition 5 in Appendix
H. This may be of independent interest.
To understand the relationship between the BR model and the GRCR we

make use of the following:

Proposition 7 Let p be an RCF. If (m,D) is a canonical GRCR representa-
tion for p and (m̂,%) is a BR model for p, then D=%. In particular, (m,D)
is an RCR representation for p.

12See, for example, Figure 2 in Aguiar et al. (2023).
13Or its unpublished predecessor, Suleymanov (2018).
14Corollary 1 in Kovach and Suleymanov (2023) is based on their Proposition 1, which

says the following:

Proposition 6 (Suleymanov, 2018; Kovach and Suleymanov, 2023) Let µ be a
consideration mapping. Then µ has an IRA representation iff it has both an LRA repre-
sentation and a CRA representation.

Proposition 6 clearly implies the “if”part of Proposition 5. However, to use Proposition
6 to establish the “only if” part we must assume that the RCR representation and BR
model for p share the same linear order (as noted by Kovach and Suleymanov: ibid.,
p.424) and the same consideration mapping. The former assumption is unproblematic
(see Proposition 7 below) but we are not aware of an argument that justifies the latter.
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Corollary 3 Let p be an RCF. Then p has an MM model iff it has both a
GRCR representation and a BR model.

Corollary 3 is immediate given Propositions 5 and 7, plus the fact that any
RCF with an RCR representation also has a GRCR representation (Theorem
1). Figure 1 summarises the relationships amongst the models.

Figure 1: Relationships amongst the models

5 Concluding remarks

In an RCR, choice is guided by a rational (linear) preference relation applied
to a random consideration set — the intersection of the choice set with a
randomly selected category. We have shown that allowing preference to be
category-dependent, but with agreement on category intersections, is equiva-
lent to relaxing the completeness and transitivity requirements of a category-
independent preference relation. It follows that our generalised RCR may
be characterised by weakening Aguiar’s (2017) Acyclicity restriction on his
revealed preference relation to an Asymmetry restriction.
The ill-behavedness of category-independent preferences in a GRCR does

not undermine the possibility of rational choice, since preferences need only
be well-behaved on sets of options which are considered together. How much
discipline this imposes is endogenous, depending on the individual’s consid-
eration process.
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If one assumes that preferences are disciplined by the experience of mak-
ing choices, then it is natural to suppose that preferences will exhibit more
consistency on sets of alternatives which are considered together. This is pre-
cisely what the GRCR model requires. Of course, the ill-behavedness of the
category-independent preference may, in principle (this is outside the model),
result in choice cycles over a sequence of choice problems (recall Example 1),
thereby prompting some further process of preference revision.
We also observed that every GRCR is observationally equivalent to some

random utility model, and we showed how to translate the Asymmetry condi-
tion into a restriction on Block-Marschak polynomials. This alternative char-
acterisation of the GRCR model raises the prospect of testing the GRCR re-
striction of the RUM polytope using recently developed econometric method-
ologies.15

As illustrated in Figure 1, the GRCR class of RCFs strictly expands the
RCR class, but without encompassing any additional RCFs characterised
by the model in Brady and Rehbeck (2016). An auxiliary contribution of
the present paper is to provide a new proof of the fact that Manzini and
Mariotti’s (2014) model characterises the intersection of the RCR and BR
classes. The MM model also, it turns out, characterises the intersection of
the GRCR and BR classes.
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Appendices

A Proof of Proposition 1

As for an RCR, the probability of choosing the default option in a GRCR
representation depends only on the attention index —the preferences play no
role. In particular,

p (a∗, A) =
∑

B:B∩A=∅

m (B)

for any A ⊆ X. Defining f (A) ≡ p
(
a∗, A

)
we have

f (A) =
∑
B⊆A

m (B)
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for any A ⊆ X. It follows by the theory of Möbius inversion (Shafer, 1976,
Lemma 2.3) that m is unique and determined by

m (A) =
∑
B:B⊆A

(−1)|A�B| f (B)

which is (6).

B Proof of Proposition 2

We first show that every GRCR model has an observationally equivalent
RUM. Consider a GRCR model with attention index, m, and category-
dependent preferences, {%E}E⊆X . Note that the only part of %E that mat-
ters is the ranking of the elements in E. Now define {%∗E}E⊆X by choosing
%∗E∈ Λ∗ so that it agrees with %E on E, and ranks any element of E (re-
spectively, E) above (respectively, below) a∗. Note that %∗E=%∗F iff E = F .
For each %∗∈ Λ∗ let

π (%∗) =
∑

E:%∗E=%∗
m (E)

(with the convention that a sum over the empty set is zero) so that π ∈ ∆
with support {%∗E}E⊆X . For any E,A ∈ 2X and any x ∈ X:

(E ∩ A)∩ %E (x) = {x} ⇔ E ∩ (A∩ %E (x)) = {x}

⇔ A∗ ∩ (E∗∩ %∗E (x)) = {x}

⇔ A∗∩ %∗E (x) = {x}

where the final equivalence uses the following two facts: %∗E (x) ⊆ E∗ when-
ever x ∈ E∗; and a∗ �∗E y for any y ∈ E. Hence, for every A ⊆ X and x ∈ X
we have

p (x,A) =
∑

E:(E∩A)∩%E(x)={x}

m (E)

=
∑

E:A∗∩%∗E(x)={x}

m (E)

= π ({%∗∈ Λ∗ | A∗∩ %∗ (x) = {x}})
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Since

p (a∗, A) = 1−
∑
x∈A

p (x,A) = π ({%∗∈ Λ∗ | A∗∩ %∗ (a∗) = {a∗}})

it follows that π gives a RUM for p.
The following example shows that not every RCF with a RUM has a

GRCR model.

Example 2 Let X = {a, b} and consider the RUM that chooses each of the
following linear orders on X∗ (summarised by their asymmetric parts) with
probability 1

2
:

a �1 b �1 a∗

and
b �2 a �2 a∗.

Let p denote the RCF generated by this RUM. Suppose p has a RGCR repre-
sentation. Since p (x, {x}) = 1 for each x ∈ X it follows that each alternative
in X must be present in every category that is given attention with strictly
positive probability. Thus, m (X) = 1 in the GRCR, which implies that choice
is deterministic. But this contradicts the fact that p (a,X) = p (b,X) = 1

2
.

C Proof of Theorem 1

We first prove:

Lemma C.1 Let p be a random choice function. Then p has a GRCR rep-
resentation iff there exists (m,%) ∈ A × Σ, with % linear on each E ⊆ X
for which m (E) > 0,16 such that (7) and (8) hold for all A ⊆ X and every
a ∈ X.

Proof. The “if” part is obvious: for each E ⊆ X for which m (E) > 0,
define %E to be any linear extension (to X) of the restriction of % to E,
and define %E∈ Λ arbitrarily if m (E) = 0. Conversely, suppose p has a
GRCR representation with attention index m and category-dependent linear
preferences {%E}E⊆X . Let

F =

{
x ∈ X

∣∣∣∣∣ ∑
E:x∈E

m (E) = 0

}
.

16That is, the restriction of % to E is linear.
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Thus, F contains the alternatives excluded from all categories in the support
of m. Define %∈ Σ as follows: % ∩F 2 = {(x, x) | x ∈ F} and for all E ⊆ X
with m (E) > 0, % ∩E2 is the restriction of %E to E. This construction is
well-defined, since %E and %F agree on E ∩ F whenever m (E)m (F ) > 0;
it is also obvious that %∈ Σ and that % is linear on E whenever m (E) > 0.
Since % coincides with %E on E if m (E) > 0, condition (7) is satisfied.
This completes the proof of Lemma C.1.

The “only if”part of Theorem 1 follows directly from Lemma C.1. To
complete the proof of Theorem 1 it suffi ces to show that if p is an RCF and
(m,%) ∈ A × Σ satisfies (7) and (8), then % is linear on each E ⊆ X for
which m (E) > 0.

Lemma C.2 Let p be an RCF and suppose (m,%) ∈ A×Σ satisfies (7) and
(8). Then m assigns zero probability to any B ⊆ X such that (i) there exist
a, b ∈ B with a 6= b, a /∈% (b) and b /∈% (a), or (ii) B contains a cycle with
respect to �.

Proof. Suppose B satisfies (i) and m (B) > 0. Let A = {a, b}. It follows
that {a, b}∩ % (a) = {a} and hence

p (a,A) =
∑

C:C∩{a,b}∩%(a)={a}

m (C)

=
∑
C:a∈C

m (C)

=
∑

E:E∩{a,b}={a}

m (E) +
∑

F :F∩{a,b}={a,b}

m (F ) .

Similarly,

p (b, A) =
∑

E:E∩{a,b}={b}

m (E) +
∑

F :F∩{a,b}={a,b}

m (F ) .

Moreoever,
p (a∗, A) =

∑
C:C∩{a,b}=∅

m (C)

so
p (A∗, A) = 1 +

∑
F :F∩A={a,b}

m (F ) ≥ 1 +m (B) > 1.

This is the desired contradiction.
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Next, suppose B satisfies (ii) and m (B) > 0. By what we have already
established, we may assume that m (E) = 0 for any E with a, b ∈ E such
that a 6= b, a /∈� (b) and b /∈� (a). Let A = {a0, a1, ..., an} ⊆ B with a0 = an
and ai � ai+1 for each i ∈ {0, 1, ..., n− 1}. Since � is asymmetric, n ≥ 3. It
follows that m (B) does not contribute to p (x,A) for any x ∈ A∗. To avoid
the conclusion that p (A∗, A) < 1 there must be some E with m (E) > 0 that
contributes to the probability of choosing more than one element of A∗. This
requires that there exist aj, ak ∈ A with aj 6= ak,

E ∩ A∩ % (aj) = {aj}

and
E ∩ A∩ % (ak) = {ak} .

But this implies {aj, ak} ⊆ E ∩ A, and hence aj /∈% (ak) and ak /∈% (aj).
Once again, we have a contradiction.

Lemma C.2 means that � is connected and acyclic, hence transitive, on
any E with m (E) > 0. Since %∈ Σ, it follows that % is linear (in particular:
complete, antisymmetric and quasi-transitive) on any suchE. This completes
the proof of Theorem 1.

D Proof of Theorem 3

With Theorem 1 in hand, our proof of Theorem 3 will closely follow the
arguments in Aguiar (2017), as readers who are familar with that paper will
easily recognise. However, we provide the details for completeness.
It will be useful to refer to the following upper contour sets for the strict

and weak revealed preference relations:

B (a) ≡ {b ∈ X|b B a} .

D (a) ≡ {b ∈ X|b D a} = {a}∪ B (a)

for any a ∈ X.
The following is an important observation about D:17

Lemma D.1 Let p be an RCF. Then

p (a,A) = p (a,D (a) ∩ A)

for every A ⊆ X and every a ∈ A.
17Aguiar (2017, p.51) makes a similar observation.
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Proof. If b ∈ A and b /∈D (a) then b 6= a and p (a,B ∪ b) = p (a,B) for all
B containing a. We may therefore successively remove each such b from A
without affecting the probability that a is chosen.

Next, we have the key implication of Axiom 3:

Lemma D.2 (cf., Aguiar, 2017, Lemma 2.) Let p be an RCF. If p sat-
isfies Asymmetry, then

p (a,A) = p (a∗, A∩ B (a)) − p (a∗, A∩ D (a))

for every A ⊆ X and every a ∈ A.

Proof. Suppose a ∈ A ⊆ X. For any b ∈B (a) ∩ A the asymmetry of B
implies p (b,D (a) ∩ A) = p (b,B (a) ∩ A). Therefore:

p (a,D (a) ∩ A) = p (a,D (a) ∩ A) +
∑

b∈B(a)∩A
[p (b,D (a) ∩ A)− p (b,B (a) ∩ A)]

=

 ∑
b∈D(a)∩A

p (b,D (a) ∩ A)

 −
 ∑
b∈B(a)∩A

p (b,B (a) ∩ A)


= [1− p (a∗,D (a) ∩ A)] − [1− p (a∗,B (a) ∩ A)]

= p (a∗,B (a) ∩ A) − p (a∗,D (a) ∩ A)

The result now follows by Lemma D.1.

In a GRCR representation, the default is chosen iff no other option is
available and considered. Hence, if (m,%) is a GRCR for p, A ⊆ X and
a ∈ A, then p (a∗,� (a) ∩ A) is the probability that no consideration is given
to anything in A that is preferred to a, and p (a∗, A∩ % (a)) is the probability
that neither a nor anything in A that is preferred to a is considered. The
difference will therefore be the probability of choosing a from A. Lemma D.2
says that the same relationship holds for any RCF when we replace � with
B and % with D, provided B is asymmetric.
Finally, the following fact will be useful for establishing the necessity of

our axioms.

Lemma D.3 Let p be an RCF and let (m,%) be a GRCR for p. Then B⊆�.
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Proof. Suppose a, b ∈ X with a B b, so p (b, A) 6= p (b, A ∪ a) for some
A ⊆ X with b ∈ A. Hence a /∈ A (and a 6= b in particular) and we may
deduce that a � b as follows: if a /∈� (b) then

A∩ % (b) = (A ∪ a)∩ % (b)

so p (b, A) = p (b, A ∪ a), which is a contradiction.

Our main result is now within easy reach. We first verify the necessity
of the axioms. Let (m,%) be a GRCR for p. The necessity of Axiom 1
follows from Propositions 1-2 and Theorem 4. To see the necessity of Axiom
3, suppose a, b ∈ X with a B b. Hence a 6= b and (Lemma D.3) a � b. By
the asymmetry of � we therefore have b /∈� (a), from which it follows that

C∩ % (a) = (C ∪ b)∩ % (a)

for any C ⊆ X with a ∈ C. Hence p (a, C) = p (a, C ∪ b) for any C ⊆ X
with a ∈ C, so (b, a) /∈B. Hence B is asymmetric.
Next, we prove suffi ciency. Let m : 2X → R be the function defined by

(6). As per the discussion in the paragraph prior to the statement of Axiom
1, the WDMP condition, together with the fact that p (a∗, ∅) = 1, implies
that m ∈ A and

p (a∗, A) =
∑
B:B⊆A

m (B) (15)

for any A ⊆ X. Using Lemma D.2 and (15) we have, for any A ⊆ X and
any a ∈ A:

p (a,A) = p (a∗,B (a) ∩ A) − p (a∗,D (a) ∩ A)

= [1− p (a∗,D (a) ∩ A)] − [1− p (a∗,B (a) ∩ A)]

=

 ∑
B:B∩A∩D(a)6=∅

m (B)

 −
 ∑
B:B∩A∩B(a)6=∅

m (B)


=

∑
B:B∩A∩D(a)={a}

m (B)

Hence (m,D) is a GRCR for p. This verifies suffi ciency and also establishes
the final claim in the Theorem.
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E Proof of Proposition 4

The Asymmetry Axiom is equivalent to the following: for any a, b ∈ X with
a 6= b, either

p (a,A ∪ {a}) = p (a,A ∪ {a, b}) (16)

for all A ⊆ X� {a, b}, or

p (b, A ∪ {b}) = p (b, A ∪ {a, b}) (17)

for all A ⊆ X� {a, b}. Conditions (16) and (17) may be written as ha
(
A
)

=

ha
(
A� {b}

)
and hb

(
A
)

= hb
(
A� {a}

)
respectively, where function hx is

defined in Theorem 4. Recall that mx : 2X → R is the Möbius inverse of
hx : 2X → R and mx (E) = 0 if x /∈ E. Hence

hx (A) =
∑
B:B⊆A

mx (B) =
∑

B:x∈B⊆A
mx (B) .

(We note in passing that 0 ≤ p (x,X) = hx ({x}) = mx ({x}), so only the sign
of mx (E) with |E| ≥ 2 is at issue.) The Asymmetry Axiom may therefore
be expressed in terms of mx as follows: for any a, b ∈ X with a 6= b, either∑

B:{a,b}⊆B⊆A

ma (B) = 0 (18)

for all A ⊆ X� {a, b}, or ∑
B:{a,b}⊆B⊆A

mb (B) = 0 (19)

for all A ⊆ X� {a, b}. A simple argument by induction on the cardinality
of A will convince the reader that (18)-(19) hold iff: for any a, b ∈ X with
a 6= b, either

{a, b} ⊆ B ⊆ X ⇒ ma (B) = 0 (20)

or
{a, b} ⊆ B ⊆ X ⇒ mb (B) = 0 (21)

The result follows.

F Proof of Corollary 2

It is well known that

mx (A) = π ({%∗∈ Λ∗| %∗ (x) = A})
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whenever x ∈ A ⊆ X (Block and Marschak, 1960; McFadden, 2005). Hence,
condition (20) in the proof of Proposition 4 says that

π ({%∗∈ Λ∗| %∗ (a) = B}) = 0

for any B ⊆ X containing {a, b}. This is evidently equivalent to

π ({%∗∈ Λ∗|a �∗ b or a∗ �∗ a}) = 1.

Condition (21) may be equivalently expressed as

π ({%∗∈ Λ∗|b �∗ a or a∗ �∗ b}) = 1.

Asymmetry therefore restricts π as follows: for any a, b ∈ X with a 6= b there
do not exist %∗1 and %∗2 in the support of π such that b �∗1 a �∗1 a∗ and
a �∗2 b �∗2 a∗.

G Proof of Proposition 7

If a � b then

p (b, {a, b}) =
m̂ ({b})∑

E⊆{a,b} m̂ (E)
<

m̂ ({b})∑
E⊆{b} m̂ (E)

= p (b, {b})

since m has full support. Hence �⊆B. It follows that D is complete and
antisymmetric, and contains the linear order, %. We now easily deduce that
%=D: if a B b we must have a � b since otherwise we obtain b B a from
�⊆B, which contradicts the asymmetry of B.

H Proof of Proposition 5

The “if”part is proved in the text. To prove the “only if”part we first recall
the MIDO axiom of Brady and Rehbeck (2016), which requires:18

p (a∗, A� {b})
p (a∗, A)

=
p (a∗, B� {b})
p (a∗, B)

(22)

for any {A,B} ⊆ 2X and any b ∈ A ∩B.
18The MIDO axiom comprises part of the i-Independence condition in Manzini and

Mariotti (2014) —the part that restricts the probability of choosing the default.
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Lemma H.1 Let p be an RCF which has a BR model and an RCR repre-
sentation. Then p satisfies the MIDO axiom.19

Proof. Let γ (x) = p (x, {x}) for each x ∈ X. Note that

γ (x) = 1− p (a∗, {x}) ∈ (0, 1) .

We will show that
p (a∗, E) =

∏
x∈E

(1− γ (x)) (23)

for any E ⊆ X, from which (22) easily follows. We argue by induction on
|E|. The case |E| = 1 is immediate. Fix some integer k > 1 and suppose
(23) holds for any E with |E| < k. Let E ⊆ X with |A| = k. It follows
by Proposition 7 that the BR model and RCR representation for p have a
common linear order: when D is complete it is the unique linear order in any
RCR representation for p. Let % denote this common linear order and let
x ∈ E be %-maximal in E. Then Lemma 3.1 in Brady and Rehbeck (2016)
implies that

p (a∗, E) = p (E∗ \ {x} , E) p (a∗, E \ {x}) .

By the inductive hypothesis we have:

p (a∗, E) = p (E∗ \ {x} , E)
∏

y∈E\{x}

(1− γ (y))

= (1− p (x,E))
∏

y∈E\{x}

(1− γ (y)) .

Since p has an RCR representation and x is %-maximal in E, it follows that
p (x,E) = p (x, {x}) so we have:

p (a∗, E) = (1− p (x, {x}))
∏

y∈E\{x}

(1− γ (y)) =
∏
y∈E

(1− γ (y)) .

This completes the proof of the lemma.

Proposition 5 now follows from Theorems 3.1 and 3.3 in Brady and Re-
hbeck (2016), which imply that any RCR that has a BR model and satisfies
the MIDO axiom also has an MM model.

19Note that any RCF with a BR model satisfies p (a∗, E) ∈ (0, 1) for any non-empty
E ⊆ X, so (22) is always well-defined when p possesses such a model.
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